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Active setting

An algorithm collects sequentially and actively data, by interacting
with a stochastic (Gaussian) bandit.
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Active setting

An algorithm collects sequentially and actively data, by interacting
with a stochastic (Gaussian) bandit.

N arms
each arm a ∈ [N] ↔ probability distribution N (µa,σ

2Id)

mean-vector µa ∈ Rd

At each time t ⩾ 1,
the algorithm chooses arm At ∈ [N] (based on passed
observations)
the algorithm receives Xt , s.t.,
conditionally on At = a, Xt ∼ N (µa,σ

2Id )
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Active setting

Figure: A1 = 1 and receives X1 ∼ N (µA1 ,σ
2Id )
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Active setting

Figure: A2 = 2 and receives X2 ∼ N (µA2 ,σ
2Id )
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Active setting

Figure: A3 = 3 and receives X3 ∼ N (µA3 ,σ
2Id )
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Active setting

Figure: A4 = 4 and receives X4 ∼ N (µA4 ,σ
2Id )
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Active setting

Figure: A5 = 5 and receives X5 ∼ N (µA5 ,σ
2Id )
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Active setting

Figure: multiple sampling
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Clustering with Bandit feedback Problem

The Active Clustering Problem (ACP) ([Yang et al., 2024]):
N arms with means µ1,    , µN
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For a, b ∈ [N], a, b are in the same group ⇔ µa = µb.
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Clustering with Bandit feedback Problem

The Active Clustering Problem (ACP) ([Yang et al., 2024]):
N arms with means µ1,    , µN

Assumption 1: hidden partition

There exists a hidden partition G ∗ of [N] into K groups.
For a, b ∈ [N], a, b are in the same group ⇔ µa = µb.

Objective
Recover the unknown partition G ∗ using as few requests as
possible, for that:

sample arms until time T (budget)
output Ĝ estimate of G∗.
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Active clustering problem

Figure: At time t, estimating Ĝ or sampling a new point.
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Remarks

assume the groups nonempty and disjoints
(only for this presentation) assume that the groups have
roughly the same size
K is known (and also N and d)
σ2 is also known
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PAC setting

δ-PAC algorithm

Given δ ∈ (0, 1), an algorithm π for the ACP is said to be δ-PAC
on a collection of environments E if for any ν, then

Pπ,ν(Ĝ ∼ G ∗) ⩾ 1− δ 

where ∼ means that the partition is exact up to permutation of the
groups.
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Parameters of interest

Dene the minimal gap ∆∗ as

∆∗ = min
k ̸=k ′

∥Λ(k)− Λ(k ′)∥ > 0 

Figure: Here N = 5, K = 3, d = 2.
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3 Upper bound

Victor Thuot University Potsdam, LMO Orsay, INRAE Montpellier

Clustering with bandit feedback



CBP: Setting Lower bound and benchmark Upper bound

Information-theoretic lower bound

Dene the optimal budget T ∗ as

T ∗ := N +
σ2

∆2N log


N

δ


+

σ2

∆2


dKN log


N

δ




Theorem 1
For any δ-PAC algorithm A, there exist an environment with
minimal gap ∆∗ (and balanced groups) such that :

E[T ] ⩾ cT ∗ ,

with c a universal constant.
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Benchmark: optimal constant if δ → 0

The problem was introduced in [Yang et al., 2024], they provide
BOC algorithm such that

1 Asymptotic optimality (exact constant)
2 For balanced and equidistant groups, budget equal to

2
σ2

∆2 (N + K ) log(1δ)
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Benchmark: uniform sampling

Uniform sampling strategy (US):
1 sample each arm the same number of times
2 use (batch) clustering on the empirical means
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Benchmark: uniform sampling

Uniform sampling strategy (US):
1 sample each arm the same number of times
2 use (batch) clustering on the empirical means

Benchmark (δ = 1N): uniform sampling is (1N)− PAC on
as long as

T ≳ σ2

∆2


N(log(N) ∨ K ) +


dKN(log(N) ∨ K )



([Royer, 2017, Giraud and Verzelen, 2019,
Vempala and Wang, 2004])
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Benchmark: uniform sampling

Uniform sampling strategy (US):
1 sample each arm the same number of times
2 use (batch) clustering on the empirical means

Benchmark (δ = 1N): uniform sampling is (1N)− PAC on
as long as

T ≳ σ2

∆2


N(log(N) ∨ K ) +


dKN(log(N) ∨ K )



([Royer, 2017, Giraud and Verzelen, 2019,
Vempala and Wang, 2004])
Information-computation gap
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Upper bound: the ACB algorithm

We derive an algorithm called Active Clustering with Bandit (ACB).
Main structure of the algorithm:

1 identify Ŝ a set of K arms with exactly one arm from each
group
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Upper bound: the ACB algorithm

We derive an algorithm called Active Clustering with Bandit (ACB).
Main structure of the algorithm:

1 identify Ŝ a set of K arms with exactly one arm from each
group

2 estimate the unknown centers of the groups using Ŝ (T ∗K
times)
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Upper bound: the ACB algorithm

We derive an algorithm called Active Clustering with Bandit (ACB).
Main structure of the algorithm:

1 identify Ŝ a set of K arms with exactly one arm from each
group

2 estimate the unknown centers of the groups using Ŝ (T ∗K
times)

3 sample uniformly the remaining arms and use a distance-based
classier (T ∗N times)
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Upper bound: main theorem

Theorem 2
Let δ > 0. The ACB algorithm is δ-PAC.
If we assume that N ⩾ K log(K ), and the groups are balanced, then

EACB,ν [T ] ⩽c
σ2

∆2


N log (Nδ) +


dNK log (Nδ)


= cT ∗
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Upper bound: main theorem

Theorem 2
Let δ > 0. The ACB algorithm is δ-PAC.
If we assume that N ⩾ K log(K ), and the groups are balanced, then

EACB,ν [T ] ⩽c
σ2

∆2


N log (Nδ) +


dNK log (Nδ)


= cT ∗

c is independent of all parameters
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Upper bound: main theorem

Theorem 2
Let δ > 0. The ACB algorithm is δ-PAC.
If we assume that N ⩾ K log(K ), and the groups are balanced, then

EACB,ν [T ] ⩽c
σ2

∆2


N log (Nδ) +


dNK log (Nδ)


= cT ∗

c is independent of all parameters
we also give a bound with high probability
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Numerical experiment

Figure: Comparison of the necessary budget for ACB and uniform
sampling
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Take home message

1 Can we improve the budget of a simple uniform sampling
strategy ?
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1 Can we improve the budget of a simple uniform sampling
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Take home message

1 Can we improve the budget of a simple uniform sampling
strategy ?

2 Can we achieve optimality ?

3 Is there an information-computation gap for ACP?
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Take home message

1 Can we improve the budget of a simple uniform sampling
strategy ?

Yes, we provide the ACB Algorithm, which outperforms the uniform
sampling strategy.

2 Can we achieve optimality ?

3 Is there an information-computation gap for ACP?
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Take home message

1 Can we improve the budget of a simple uniform sampling
strategy ?

Yes, we provide the ACB Algorithm, which outperforms the uniform
sampling strategy.

2 Can we achieve optimality ?

Yes, T ∗ ≃ σ2

∆2


N log


N
δ


+


dKN log


N
δ


.

3 Is there an information-computation gap for ACP?
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Take home message

1 Can we improve the budget of a simple uniform sampling
strategy ?

Yes, we provide the ACB Algorithm, which outperforms the uniform
sampling strategy.

2 Can we achieve optimality ?

Yes, T ∗ ≃ σ2

∆2


N log


N
δ


+


dKN log


N
δ


.

3 Is there an information-computation gap for ACP?
No, there is no computational-gap, polynomial time algorithm ACB

is optimal in most regimes (e.g., balanced setting).
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Take home message

1 Can we improve the budget of a simple uniform sampling
strategy ?

Yes, we provide the ACB Algorithm, which outperforms the uniform
sampling strategy.

2 Can we achieve optimality ?

Yes, T ∗ ≃ σ2

∆2


N log


N
δ


+


dKN log


N
δ


.

3 Is there an information-computation gap for ACP?
No, there is no computational-gap, polynomial time algorithm ACB

is optimal in most regimes (e.g., balanced setting).

Do you have any question ?
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Sub-Gaussian noise

A mean-zero random variable Z is subGaussian if, for any t > 0, we
have E[exp(tZ )] ≤ exp(t22) 

Assumption 2: sub-Gaussian noise

For any a ∈ [N], if X is sampled from the arm a,

E = Σ
−12
a [X − µa]

is made of independent subGaussian random variables,
Σa is a d × d symmetric matrix associated to a,
there exists σ such that maxa∈[N] ∥Σa∥op ⩽ σ2.

Exemples : bounded noise or Gaussian noise.

Victor Thuot University Potsdam, LMO Orsay, INRAE Montpellier

Clustering with bandit feedback



First step: identication of representatives

Consider for s ∈ [r ] the s-th test performed on the candidate b.
For a ∈ Ŝ , we compute the statistic


µ̄b,s − µ̂a, µ̄

′
b,s − µ̂′

a



µ̂b,s , µ̂′
b,s are two independent estimation of µb computed

with ns samples
µ̂a, µ̂a are estimates of µa computed with nmax samples
the expectation of this statistic is ∥µa − µb∥2
we reject b if it is smaller than ∆22 fo some a ∈ Ŝ .

We use sub-Gaussian concentration to choose the tuning
parameters ns , nmax , r .
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Second step: classication

Imagine that Ŝ = {a1,    , aK} contains one arm from each group.
1 First, for j ∈ [K ], label aj with j and estimate µ(j) with two

independent means using 2J samples.
2 Then, for each b ∈ [N] \ Ŝ , labels b in the group

argminj=1,,K


µ̂b − µ̂(j), µ̂′

b − µ̂′(j)


µ̂b,µ̂′
b are computed with I = KJN samples
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