ELE NOR

Active clustering with bandit feedback joint work with Alexandra Carpentier¹, Christophe Giraud² and Nicolas Verzelen³

Victor Thuot³

¹University Potsdam

²LMO Orsay

³INRAE Montpellier

3rd ASCAI Workshop in Potsdam, 21st of February 2024

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < University Potsdam, LMO Orsay, INRAE Montpellier

ELE NOR

1 Setting: Active Clustering Problem

- 2 Contributions: Gaussian setting
- 3 Information-theoretic Lower bound
- 4 Upper Bound: the ACB Algorithm

Victor Thuot Active clustering

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < University Potsdam, LMO Orsay, INRAE Montpellier

1 Setting: Active Clustering Problem

- 2 Contributions: Gaussian setting
- 3 Information-theoretic Lower bound
- 4 Upper Bound: the ACB Algorithm

きょう しょう スピッス 四マ スロッ

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

ACP:Setting 0●000	Contributions 0000000	Lower Bound 0000	Upper bound 00000000
Active setting			

An algorithm collects sequentially and actively data, by interacting with a stochastic bandit.

ACP:Setting 0●000	Contributions 0000000	Lower Bound 0000	Upper bound 00000000

An algorithm collects sequentially and actively data, by interacting with a stochastic bandit.

N arms

• each arm $a \in [N] \leftrightarrow$ probability distribution ν_a on \mathbb{R}^d

• mean-vector
$$\mathbb{E}_{X \sim \nu_a}[X] := \mu_a \in \mathbb{R}^d$$

University Potsdam, LMO Orsay, INRAE Montpellier

ACP:Setting 0●000	Contributions 0000000	Lower Bound 0000	Upper bound 00000000

An algorithm collects sequentially and actively data, by interacting with a stochastic bandit.

N arms

- each arm $a \in [N] \leftrightarrow$ probability distribution ν_a on \mathbb{R}^d
- mean-vector $\mathbb{E}_{X \sim \nu_a}[X] := \mu_a \in \mathbb{R}^d$

An algorithm collects sequentially and actively data, by interacting with a stochastic bandit.

N arms

- each arm $a \in [N] \leftrightarrow$ probability distribution ν_a on \mathbb{R}^d
- mean-vector $\mathbb{E}_{X \sim \nu_a}[X] := \mu_a \in \mathbb{R}^d$
- at each time $t \ge 1$, the algorithm chooses arm $A_t \in [N]$ (based on passed observations)
- the algorithm receives X_t, s.t.,
 conditionally on A_t = a, X_t ~ ν_a

University Potsdam, LMO Orsay, INRAE Montpellier

An algorithm collects sequentially and actively data, by interacting with a stochastic bandit.

N arms

- each arm $a \in [N] \leftrightarrow$ probability distribution ν_a on \mathbb{R}^d
- mean-vector $\mathbb{E}_{X \sim \nu_a}[X] := \mu_a \in \mathbb{R}^d$
- at each time $t \ge 1$, the algorithm chooses arm $A_t \in [N]$ (based on passed observations)
- the algorithm receives X_t , s.t., conditionally on $A_t = a$, $X_t \sim \nu_a$
- (ν_1, \ldots, ν_N) : environment

Hidden partition assumption

The Active Clustering Problem (ACP) ([Yang et al., 2024]) is defined by

- a bandit environment with *N* arms that have to be partitioned
- each arm $a \in [N] \leftrightarrow$ mean-vector $\mu_a \in \mathbb{R}^d$

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

Hidden partition assumption

The Active Clustering Problem (ACP) ([Yang et al., 2024]) is defined by

- a bandit environment with *N* arms that have to be partitioned
- each arm $a \in [N] \leftrightarrow$ mean-vector $\mu_a \in \mathbb{R}^d$

Assumption 1: hidden partition

There exists a hidden partition G^* of [N] into K groups.

For $a, b \in [N]$, a, b are in the same group $\Leftrightarrow \mu_a = \mu_b$.

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

Hidden partition assumption

The Active Clustering Problem (ACP) ([Yang et al., 2024]) is defined by

- a bandit environment with *N* arms that have to be partitioned
- each arm $a \in [N] \leftrightarrow$ mean-vector $\mu_a \in \mathbb{R}^d$

Assumption 1: hidden partition

There exists a hidden partition G^* of [N] into K groups.

For $a, b \in [N]$, a, b are in the same group $\Leftrightarrow \mu_a = \mu_b$.

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

Hidden partition assumption

The Active Clustering Problem (ACP) ([Yang et al., 2024]) is defined by

- a bandit environment with *N* arms that have to be partitioned
- each arm $a \in [N] \leftrightarrow$ mean-vector $\mu_a \in \mathbb{R}^d$

Assumption 1: hidden partition

There exists a hidden partition G^* of [N] into K groups.

For $a, b \in [N]$, a, b are in the same group $\Leftrightarrow \mu_a = \mu_b$.

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

Hidden partition assumption

The Active Clustering Problem (ACP) ([Yang et al., 2024]) is defined by

- a bandit environment with N arms that have to be partitioned
- each arm $a \in [N] \leftrightarrow$ mean-vector $\mu_a \in \mathbb{R}^d$

Assumption 1: hidden partition

There exists a hidden partition G^* of [N] into K groups.

For $a, b \in [N]$, a, b are in the same group $\Leftrightarrow \mu_a = \mu_b$.

- each group $k \in [K] \leftrightarrow \text{center } \mu(k)$
- The k-th group, is $G_k^* := \{a \in [N]; \mu_a = \mu(k)\}$

University Potsdam, LMO Orsay, INRAE Montpellier

Hidden partition assumption

The Active Clustering Problem (ACP) ([Yang et al., 2024]) is defined by

- a bandit environment with *N* arms that have to be partitioned
- each arm $a \in [N] \leftrightarrow$ mean-vector $\mu_a \in \mathbb{R}^d$

Assumption 1: hidden partition

There exists a hidden partition G^* of [N] into K groups.

For $a, b \in [N]$, a, b are in the same group $\Leftrightarrow \mu_a = \mu_b$.

- each group $k \in [K] \leftrightarrow$ center $\mu(k)$
- The k-th group, is $G_k^* := \{a \in [N]; \mu_a = \mu(k)\}$
- assume the groups nonempty and disjoints
- K is known (and also N and d)

ACP:Setting 000●0	Contributions 0000000	Lower Bound 0000	Upper bound 00000000
Objective			

The objective is to recover the unknown partition G^* using as few requests as possible ;

University Potsdam, LMO Orsay, INRAE Montpellier

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < 0

ACP:Setting 000●0	Contributions 0000000	Lower Bound 0000	Upper bound 00000000
Objective			
Objective			

The objective is to recover the unknown partition G^* using as few requests as possible ;

• sample arms until time τ (budget)

University Potsdam, LMO Orsay, INRAE Montpellier

<ロ> <同> <同> <同> <同> <同> <同> <同> <同</p>

ACP:Setting 000●0	Contributions 0000000	Lower Bound 0000	Upper bound 00000000

The objective is to recover the unknown partition G^* using as few requests as possible ;

- sample arms until time τ (budget)
- output: \hat{G} estimate of G^* .

University Potsdam, LMO Orsay, INRAE Montpellier

<ロ> <同> <同> <同> <同> <同> <同> <同> <同</p>

Victor Thuot Active clustering

Objective

ACP:Setting 000●0	Contributions 0000000	Lower Bound 0000	Upper bound 00000000

Objective

The objective is to recover the unknown partition G^* using as few requests as possible ;

- sample arms until time τ (budget)
- output: \hat{G} estimate of G^* .

$\delta\text{-PAC}$ algorithm

Given $\delta \in (0, 1)$, an algorithm π for the ACP is said to be δ -PAC on a collection of environments \mathcal{E} if for any $\nu = (\nu_1, \dots, \nu_N) \in \mathcal{E}$, then

$$\mathbb{P}_{\pi,
u}(\hat{G}\sim G^*) \geqslant 1-\delta$$
 .

where \sim means that the partition is exact up to permutation of the groups.

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

- 4 回 2 - 4 □ 2 - 4 □

Upper bound

= nar

Optimal worst case budget

We define the optimal worst case (expected) budget on the collection \mathcal{E} as

$$\mathcal{T}^*(\delta,\mathcal{E}) = \inf_{\pi} \sup_{\nu \in \mathcal{E}} \mathbb{E}_{\pi,\nu}[\tau] \;,$$

where π is δ -PAC algorithms on \mathcal{E} .

Victor Thuot Active clustering

(日) (周) (日) (日) University Potsdam, LMO Orsay, INRAE Montpellier

Upper bound

= nar

Optimal worst case budget

We define the optimal worst case (expected) budget on the collection \mathcal{E} as

$$\mathcal{T}^*(\delta,\mathcal{E}) = \inf_{\pi} \sup_{\nu \in \mathcal{E}} \mathbb{E}_{\pi,\nu}[\tau] \;,$$

where π is δ -PAC algorithms on \mathcal{E} .

Victor Thuot Active clustering

(日) (周) (日) (日) University Potsdam, LMO Orsay, INRAE Montpellier Contribution:

Lower Bound

Upper bound

Optimal worst case budget

We define the optimal worst case (expected) budget on the collection $\ensuremath{\mathcal{E}}$ as

```
T^*(\delta, \mathcal{E}) = \inf_{\pi} \sup_{\nu \in \mathcal{E}} \mathbb{E}_{\pi, \nu}[\tau] ,
```

where π is δ -PAC algorithms on \mathcal{E} .

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

Upper bound

JI DOG

Optimal worst case budget

We define the optimal worst case (expected) budget on the collection \mathcal{E} as

```
T^*(\delta, \mathcal{E}) = \inf_{\pi} \sup_{\nu \in \mathcal{E}} \mathbb{E}_{\pi, \nu}[\tau] ,
```

where π is δ -PAC algorithms on \mathcal{E} .

Victor Thuot Active clustering

University Potsdam, LMO Orsay, INRAE Montpellier

1 Setting: Active Clustering Problem

2 Contributions: Gaussian setting

3 Information-theoretic Lower bound

4 Upper Bound: the ACB Algorithm

②⊘⊘ 世前 《冊》《冊》《□》

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

Contributions

Lower Bound

Upper bound

Gaussian noise

Assumption 2: Gaussian noise

1 there exists Σ_a s.t. $\nu_a = \mathcal{N}(\mu_a, \Sigma_a)$

for any $a \in [N]$, if X is sampled from the arm a,

$$X = \mu_a + \Sigma_a E$$
 ,

where E is a standard Gaussian vector

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

Contributions

Lower Bound

Upper bound

Gaussian noise

Assumption 2: Gaussian noise

1 there exists Σ_a s.t. $\nu_a = \mathcal{N}(\mu_a, \Sigma_a)$

for any $a \in [N]$, if X is sampled from the arm a,

$$X = \mu_a + \Sigma_a E$$
 ,

where *E* is a standard Gaussian vector 2 we know σ s.t., $\sigma^2 \ge \sup_{a \in [N]} \|\Sigma_a\|_{op}$

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

Parameters of interest

First, we consider $\Delta_* = \Delta_*(\nu)$ for the minimal gap,

$$\Delta_* = \min_{k
eq k'} \left\| \mu(k) - \mu(k')
ight\| > 0$$
 .

Besides, we denote m_* as the size of the smallest group,

$$m_* = \min_{k \in [K]} |G_k^*|$$

٠

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

Construction of a family of environments

• Consider $\Delta > 0$, and $m \ge 1$, we define

 $\mathcal{E} := \mathcal{E}(\Delta, m)$,

as the collection of environments ν such that $\Delta_*(\nu) \ge \Delta$, $m_*(\nu) \ge m$.

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

Construction of a family of environments

• Consider $\Delta > 0$, and $m \ge 1$, we define

 $\mathcal{E} := \mathcal{E}(\Delta, m)$,

as the collection of environments ν such that $\Delta_*(\nu) \ge \Delta$, $m_*(\nu) \ge m$.

• We study the optimal worst case budget on $\mathcal{E}(\Delta, m)$

$$T^*(\delta, \mathcal{E}(\Delta, m))$$
 .

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

Benchmark: the uniform sampling strategy

Uniform sampling strategy (US):

- **1** sample *T* times each arm
- 2 use (batch) clustering on the empirical means

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

Benchmark: the uniform sampling strategy

Uniform sampling strategy (US):

- **1** sample *T* times each arm
- 2 use (batch) clustering on the empirical means
- (shrinkage $\sigma^2 \mapsto \sigma^2/T$)

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

Benchmark: the uniform sampling strategy

Uniform sampling strategy (US):

- 1 sample T times each arm
- 2 use (batch) clustering on the empirical means
- (shrinkage $\sigma^2 \mapsto \sigma^2/T$)
- Benchmark: for a confidence bound δ = 1/N, balanced group m = N/K, uniform sampling is δ - PAC on E(Δ, m) as long as

$$au = \mathsf{NT} \gtrsim rac{\sigma^2}{\Delta^2} \left[\mathsf{N}(\mathsf{log}(\mathsf{N}) \lor \mathsf{K}) + \sqrt{d\mathsf{KN}(\mathsf{log}(\mathsf{N}) \lor \mathsf{K})}
ight]$$

([Royer, 2017, Giraud and Verzelen, 2019, Vempala and Wang, 2004])

Victor Thuot Active clustering

Benchmark: the uniform sampling strategy

Uniform sampling strategy (US):

- 1 sample T times each arm
- 2 use (batch) clustering on the empirical means
- (shrinkage $\sigma^2 \mapsto \sigma^2/T$)
- Benchmark: for a confidence bound $\delta = 1/N$, balanced group m = N/K, uniform sampling is δPAC on $\mathcal{E}(\Delta, m)$ as long as

$$au = \mathsf{NT} \gtrsim rac{\sigma^2}{\Delta^2} \left[\mathsf{N}(\mathsf{log}(\mathsf{N}) \lor \mathbf{K}) + \sqrt{d\mathsf{KN}(\mathsf{log}(\mathsf{N}) \lor \mathbf{K})}
ight]$$

([Royer, 2017, Giraud and Verzelen, 2019, Vempala and Wang, 2004])

Information-computation gap

Benchmark: optimal result in the asymptotic regime $\delta \rightarrow 0$

The problem was introduced in [Yang et al., 2024], they provide:

- 1 Instance-dependent lower bound
- **2** An algorithm optimal in the asymptotic regime $\delta
 ightarrow 0$
- for instance, with m = N/K, equal distance between the groups, and equal variance $\sigma^2 I_d$,

$$\lim_{\delta \to 0} \frac{T^*(\delta, \mathcal{E}(\Delta, m))}{\log(1/\delta)} = 2 \frac{\sigma^2}{\Delta^2} (N + K)$$

methodology: ([Garivier and Kaufmann, 2016])

University Potsdam, LMO Orsay, INRAE Montpellier

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ACP:Setting	
00000	

Contributions

1 Can we improve the budget of a simple uniform sampling strategy ?

▲□▶ ▲圖▶ ▲필▶ ▲필▶ ● 필필 · 키٩(

University Potsdam, LMO Orsay, INRAE Montpellier

Contributions

1 Can we improve the budget of a simple uniform sampling strategy ?

2 Can we achieve $T^*(\delta, \mathcal{E}(\Delta, m))$?

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

University Potsdam, LMO Orsay, INRAE Montpellier

Contributions

1 Can we improve the budget of a simple uniform sampling strategy ?

2 Can we achieve $T^*(\delta, \mathcal{E}(\Delta, m))$?

3 Is there an information-computation gap for ACP?

University Potsdam, LMO Orsay, INRAE Montpellier

Contributions

- **1** Can we improve the budget of a simple uniform sampling strategy ?
- Yes, we provide the ACB Algorithm, a polynomial-time algorithm which outperforms the uniform sampling strategy.
 - **2** Can we achieve $T^*(\delta, \mathcal{E}(\Delta, m))$?

3 Is there an information-computation gap for ACP?

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

Contributions

- **1** Can we improve the budget of a simple uniform sampling strategy ?
- Yes, we provide the ACB Algorithm, a polynomial-time algorithm which outperforms the uniform sampling strategy.
 - **2** Can we achieve $T^*(\delta, \mathcal{E}(\Delta, m))$?

Yes,
$$T^* \simeq \frac{\sigma^2}{\Delta^2} \left[N \log \left(\frac{N}{\delta} \right) + \sqrt{dKN \log \left(\frac{N}{\delta} \right)} \right].$$

3 Is there an information-computation gap for ACP?

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

Contributions

- **1** Can we improve the budget of a simple uniform sampling strategy ?
- Yes, we provide the ACB Algorithm, a polynomial-time algorithm which outperforms the uniform sampling strategy.
 - **2** Can we achieve $T^*(\delta, \mathcal{E}(\Delta, m))$?

Yes,
$$T^* \simeq \frac{\sigma^2}{\Delta^2} \left[N \log\left(\frac{N}{\delta}\right) + \sqrt{dKN \log\left(\frac{N}{\delta}\right)} \right].$$

- **3** Is there an information-computation gap for ACP?
- No, there is no computational gap, ACB is optimal in most emblematic regimes (e.g., balanced setting).

1 Setting: Active Clustering Problem

2 Contributions: Gaussian setting

3 Information-theoretic Lower bound

4 Upper Bound: the ACB Algorithm

むすの 世所 エポットポット電マート

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

.

Information-theoretic lower bound

Theorem 1

There exists a universal constant c > 0, such that the following holds for any $\Delta > 0$, any $m \ge 2$, any $\delta \in (0, 1/12)$, and any $N \ge mK$:

$$T^*(\delta, \mathcal{E}(\Delta, m)) \ge c \left[\frac{\sigma^2}{\Delta^2} N \log\left(\frac{N}{\delta}\right) + \frac{\sigma^2}{\Delta^2} \sqrt{dKN \log\left(\frac{N}{\delta}\right)} \right]$$

University Potsdam, LMO Orsay, INRAE Montpellier

<ロ> <同> <同> <同> <同> <同> <同> <同> <同</p>

ACP:Setting

Contributions

Lower Bound

Comments

Dichotomy between low-dimensional and high-dimensional clustering problems:

$$T^* \ge c \left[rac{\sigma^2}{\Delta^2} N \log\left(rac{N}{\delta}
ight) + rac{\sigma^2}{\Delta^2} \sqrt{dKN \log\left(rac{N}{\delta}
ight)}
ight]$$

University Potsdam, LMO Orsay, INRAE Montpellier

.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < 0

ACP:Setting

Lower Bound

Comments

Dichotomy between low-dimensional and high-dimensional clustering problems:

$$T^* \ge c \left[\frac{\sigma^2}{\Delta^2} N \log\left(\frac{N}{\delta}\right) + \frac{\sigma^2}{\Delta^2} \sqrt{dKN \log\left(\frac{N}{\delta}\right)} \right]$$

- In low-dimension, the bound is obtained by reducing the problem to a specific instance of the thresholding bandit problem ([Cheshire et al., 2020, Chen and Li, 2015, Chen et al., 2014]).
- Simpler problem: $K = 2, d = 1, \mu_a \in \{0, \Delta\}$ with Δ known

.

EL SOO

Comments

$$T^* \ge c \left[rac{\sigma^2}{\Delta^2} N \log\left(rac{N}{\delta}
ight) + rac{\sigma^2}{\Delta^2} \sqrt{dKN \log\left(rac{N}{\delta}
ight)}
ight]$$

- In high-dimension, we use a series of reduction, driven by two ideas:
 - Bayesian approach: chose a "good" prior on the unknwon 1 centers
 - **2** ACP is at least as "difficult", as the (active) supervised problem where we would know the group of all the arms except one

University Potsdam, LMO Orsay, INRAE Montpellier

٠

1 Setting: Active Clustering Problem

- 2 Contributions: Gaussian setting
- 3 Information-theoretic Lower bound
- 4 Upper Bound: the ACB Algorithm

<日 > < 四 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

Upper bound: the ACB algorithm

We derive an algorithm called Active Clustering with Bandit (ACB). Main structure of the algorithm:

1 identify \hat{S} a set of K arms with exactly one arm from each group

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

<ロ> <同> <同> <同> <同> <同> <同> <同> <同</p>

Upper bound: the ACB algorithm

We derive an algorithm called Active Clustering with Bandit (ACB). Main structure of the algorithm:

- 1 identify \hat{S} a set of K arms with exactly one arm from each group
- 2 estimate the unknown centres of the groups using \hat{S}

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

Upper bound: the ACB algorithm

We derive an algorithm called Active Clustering with Bandit (ACB). Main structure of the algorithm:

- 1 identify \hat{S} a set of K arms with exactly one arm from each group
- 2 estimate the unknown centres of the groups using \hat{S}
- **3** sample uniformly the remaining arms and use a distance-based classifier

First step: identification of representatives

Imagine that \hat{S} contains k < K arms from different clusters. Until $|\hat{S}| < K$,

- take randomly a new candidate $b \in [N]$
- \blacksquare perform a sequence of tests to decide whether b should be added to \hat{S} or not
- the objective is to reject quickly arms whose groups are already represented

We use for the tests sub-sampling and high dimensional two-sample testing.

Similar to an elimination technique

[de Heide et al., 2021, Jamieson and Nowak, 2014].

Contributions

Lower Bound

Upper bound

Upper bound: main theorem

Theorem 2

Let $\delta > 0$. The ACB algorithm is δ -PAC on $\mathcal{E}(\Delta, m)$. If we assume that $m \ge \log(K)$, then

$$\mathbb{E}_{ACB,\nu}[\tau] \leqslant c \frac{\sigma^2}{\Delta^2} \left[N \log\left(N/\delta\right) + \sqrt{dNK \log\left(N/\delta\right)} + \sqrt{d} \frac{N \log(K)}{m} \right]$$

University Potsdam, LMO Orsay, INRAE Montpellier

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < 0

Contribution:

Lower Bound

Upper bound

Upper bound: main theorem

Theorem 2

Let $\delta > 0$. The ACB algorithm is δ -PAC on $\mathcal{E}(\Delta, m)$. If we assume that $m \ge \log(K)$, then

$$\mathbb{E}_{ACB,\nu}[\tau] \leqslant c \frac{\sigma^2}{\Delta^2} \left[N \log\left(N/\delta\right) + \sqrt{dNK \log\left(N/\delta\right)} + \sqrt{d} \frac{N \log(K)}{m} \right]$$

c is independent of all parameters

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

Contributions

Lower Bound

Upper bound

Upper bound: main theorem

Theorem 2

Let $\delta > 0$. The ACB algorithm is δ -PAC on $\mathcal{E}(\Delta, m)$. If we assume that $m \ge \log(K)$, then

$$\mathbb{E}_{ACB,\nu}[\tau] \leqslant c \frac{\sigma^2}{\Delta^2} \left[N \log\left(N/\delta\right) + \sqrt{dNK \log\left(N/\delta\right)} + \sqrt{d} \frac{N \log(K)}{m} \right]$$

c is independent of all parameters

we also give a bound with high probability

University Potsdam, LMO Orsay, INRAE Montpellier

ACP:Setting

Contributions

Lower Bound

Upper bound

Comments

$$\mathbb{E}[\tau] \leqslant c \frac{\sigma^2}{\Delta^2} \left[N \log\left(N/\delta\right) + \sqrt{dNK \log\left(N/\delta\right)} + \sqrt{d} \frac{N \log(K)}{m} \right]$$

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ●

ACP:Setting

Contributions

Lower Bound

Upper bound

Comments

$$\mathbb{E}[\tau] \leqslant c \frac{\sigma^2}{\Delta^2} \left[N \log\left(N/\delta\right) + \sqrt{dNK \log\left(N/\delta\right)} + \sqrt{d} \frac{N \log(K)}{m} \right]$$

1 the condition $m \ge \log(K)$ is not too restrictive

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

Comments

$$\mathbb{E}[\tau] \leqslant c \frac{\sigma^2}{\Delta^2} \left[N \log\left(N/\delta\right) + \sqrt{dNK \log\left(N/\delta\right)} + \sqrt{d} \frac{N \log(K)}{m} \right]$$

1 the condition $m \ge \log(K)$ is not too restrictive 2 the upper bound is optimal if m is large enough, $\left(m \ge \sqrt{\frac{N}{K}} \frac{\log(K)}{\sqrt{\log(N/\delta)}}\right)$

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

Comments

$$\mathbb{E}[\tau] \leqslant c \frac{\sigma^2}{\Delta^2} \left[N \log\left(N/\delta\right) + \sqrt{dNK \log\left(N/\delta\right)} + \sqrt{d} \frac{N \log(K)}{m} \right]$$

- 1 the condition $m \ge \log(K)$ is not too restrictive 2 the upper bound is optimal if m is large enough, $\left(m \ge \sqrt{\frac{N}{K}} \frac{\log(K)}{\sqrt{\log(N/\delta)}}\right)$
- ${\bf 3}$ the algorithm is polynomial \rightarrow no information-computation gap

University Potsdam, LMO Orsay, INRAE Montpellier

Contributions

Lower Bound

Take home message

- 1 There is no computational gap for the ACP.
- 2 We provide a lower bound on the budget

$$T^* \ge c \left[rac{\sigma^2}{\Delta^2} N \log\left(rac{N}{\delta}
ight) + rac{\sigma^2}{\Delta^2} \sqrt{dKN \log\left(rac{N}{\delta}
ight)}
ight]$$

3 We provide a polynomial time δ -PAC algorithm called ACB, together with an upper bound on its budget which matches the lower bound for mild assumption on m_* .

Open questions

- **1** Design an environment-dependent non-asymptotic bound
- 2 Derive other active vs batch comparison

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

Thank you !

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ●

Chen, L. and Li, J. (2015).

On the optimal sample complexity for best arm identification. *arXiv preprint arXiv:1511.03774*.

- Chen, S., Lin, T., King, I., Lyu, M. R., and Chen, W. (2014).
 Combinatorial pure exploration of multi-armed bandits.
 Advances in neural information processing systems, 27.
- Cheshire, J., Ménard, P., and Carpentier, A. (2020). The influence of shape constraints on the thresholding bandit problem.

In Conference on Learning Theory, pages 1228–1275. PMLR.

University Potsdam, LMO Orsay, INRAE Montpellier

de Heide, R., Cheshire, J., Ménard, P., and Carpentier, A. (2021). Bandits with many optimal arms. Advances in Neural Information Processing Systems, 34:22457-22469

Garivier, A. and Kaufmann, E. (2016). Optimal best arm identification with fixed confidence. In Conference on Learning Theory, pages 998–1027. PMLR.

Giraud, C. and Verzelen, N. (2019). Partial recovery bounds for clustering with the relaxed k-means.

Mathematical Statistics and Learning, 1(3):317–374.

	- 1	
	_	

Jamieson, K. and Nowak, R. (2014).

Best-arm identification algorithms for multi-armed bandits in the fixed confidence setting.

In 2014 48th Annual Conference on Information Sciences and Systems (CISS), pages 1–6. IEEE.

Royer, M. (2017).

Adaptive clustering through semidefinite programming. Advances in Neural Information Processing Systems, 30.

Vempala, S. and Wang, G. (2004). A spectral algorithm for learning mixture models. Journal of Computer and System Sciences, 68(4):841–860.

Yang, J., Zhong, Z., and Tan, V. Y. (2024). Optimal clustering with bandit feedback. Journal of Machine Learning Research, 25:1–54.

・ロト・日本・モート 御子 うへの

University Potsdam, LMO Orsay, INRAE Montpellier

Sub-Gaussian noise

A mean-zero random variable Z is subGaussian if, for any t>0, we have $\mathbb{E}[\exp(tZ)] \leq \exp(t^2/2)$.

Victor Thuot Active clustering University Potsdam, LMO Orsay, INRAE Montpellier

Sub-Gaussian noise

A mean-zero random variable Z is subGaussian if, for any t>0, we have $\mathbb{E}[\exp(tZ)] \leq \exp(t^2/2)$.

Assumption 2: sub-Gaussian noise

For any $a \in [N]$, if X is sampled from the arm a,

$$E = \Sigma_a^{-1/2} [X - \mu_a]$$

is made of independent subGaussian random variables,

- Σ_a is a $d \times d$ symmetric matrix associated to a,
- there exists σ such that $\max_{a \in [N]} \|\Sigma_a\|_{op} \leq \sigma^2$.

Victor Thuot Active clustering

Sub-Gaussian noise

Victor Thuot

Active clustering

A mean-zero random variable Z is subGaussian if, for any t>0, we have $\mathbb{E}[\exp(tZ)] \leq \exp(t^2/2)$.

Assumption 2: sub-Gaussian noise

For any $a \in [N]$, if X is sampled from the arm a,

$$E = \Sigma_a^{-1/2} [X - \mu_a]$$

is made of independent subGaussian random variables,

- Σ_a is a $d \times d$ symmetric matrix associated to a,
- there exists σ such that $\max_{a \in [N]} \|\Sigma_a\|_{op} \leq \sigma^2$.

Exemples : bounded noise or Gaussian noise.

University Potsdam, LMO Orsay, INRAE Montpellier

First step: identification of representatives

Consider for $s \in [r]$ the *s*-th test performed on the candidate *b*. For $a \in \hat{S}$, we compute the statistic

$$\left\langle \bar{\mu}_{b,s} - \hat{\mu}_{a}, \bar{\mu}_{b,s}' - \hat{\mu}_{a}' \right\rangle$$

- $\hat{\mu}_{b,s}$, $\hat{\mu}'_{b,s}$ are two independent estimation of μ_b computed with n_s samples
- $\hat{\mu}_a$, $\hat{\mu}_a$ are estimates of μ_a computed with n_{\max} samples
- the expectation of this statistic is $\|\mu_a \mu_b\|^2$

• we reject *b* if it is smaller than $\Delta^2/2$ fo some $a \in \hat{S}$. We use sub-Gaussian concentration to choose the tuning parameters n_s , n_{max} , *r*.

くロット 本語 マイビット モーマ うらつ

Second step: classification

Imagine that $\hat{S} = \{a_1, \ldots, a_K\}$ contains one arm from each group.

- **I** First, for $j \in [K]$, label a_j with j and estimate $\mu(j)$ with two independent means using 2*J* samples.
- **2** Then, for each $b \in [N] \setminus \hat{S}$, labels b in the group

$$\operatorname{argmin}_{j=1,\ldots,K} \left\langle \hat{\mu}_{b} - \hat{\mu}(j), \hat{\mu}_{b}' - \hat{\mu}'(j) \right\rangle$$

 $\hat{\mu}_b, \hat{\mu}_b'$ are computed with I = K J/N samples

Victor Thuot Active clustering