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Consider n items
Consider d features
Each item i is characterized by a d-dimensional feature vector
µi = [µi ,1,    , µi ,d ] ∈ Rd
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Model: feature matrix

Consider n items
Consider d features
Each item i is characterized by a d-dimensional feature vector
µi = [µi ,1,    , µi ,d ] ∈ Rd

M =




µ1,1 · · · µ1,j · · · µ1,d
...

...
...

µi ,1 · · · µi ,j · · · µi ,d
...

...
...

µn,1 · · · µn,j · · · µn,d



← µi
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Model: feature matrix

Consider n items (experts)
Consider d features (tasks)
Each item i is characterized by a d-dimensional feature vector
µi = [µi ,1,    , µi ,d ] ∈ Rd (performance)

M =




µ1,1 · · · µ1,j · · · µ1,d
...

...
...

µi ,1 · · · µi ,j · · · µi ,d
...

...
...

µn,1 · · · µn,j · · · µn,d



← µi
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Model: hidden partition

Assumption 1: hidden partition

We assume that there exists two dierent vector µa ∈ Rd , and
µb ∈ Rd , such that, for any item i ∈ 1,    , n, µi ∈ µa, µb.

M =




µ1,1 · · · µ1,j · · · µ1,d
...

...
...

µi ,1 · · · µi ,j · · · µi ,d
...

...
...

µn,1 · · · µn,j · · · µn,d



=




µ1
...
µi
...
µd




← µ1 = µa

...
← µi ∈ µa, µb
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Model: hidden partition

Assumption 1: hidden partition

We assume that there exists two dierent vector µa ∈ Rd , and
µb ∈ Rd , such that, for any item i ∈ 1,    , n, µi ∈ µa, µb.

The items are partitioned into two unknown, non empty and
non overlapping groups.
Let g ∈ 0, 1n be the label vector such that g(1) = 0, and

Mi ,j =


µa
j if g(i) = 0 ,

µb
j if g(i) = 1 
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Model: hidden partition

Assumption 1: hidden partition

We assume that there exists two dierent vector µa ∈ Rd , and
µb ∈ Rd , such that, for any item i ∈ 1,    , n, µi ∈ µa, µb.

The items are partitioned into two unknown, non empty and
non overlapping groups.
Let g ∈ 0, 1n be the label vector such that g(1) = 0, and

Mi ,j =


µa
j if g(i) = 0 ,

µb
j if g(i) = 1 

The objective is to recover perfectly g
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Model: bandit feedback

An algorithm collects sequentially and adaptively feedback - which
consists on noisy observations of entries of matrix M .
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Model: bandit feedback

An algorithm collects sequentially and adaptively feedback - which
consists on noisy observations of entries of matrix M .

Learning protocol
At each time step t,

choose an item It ∈ 1,    , n (based on the past)
choose a feature Jt ∈ 1,    , d (based on the past)
receive Xt , s.t., Xt ∼ νIt ,Jt (conditionally on (It , Jt))
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Model: bandit feedback

An algorithm collects sequentially and adaptively feedback - which
consists on noisy observations of entries of matrix M .

Learning protocol
At each time step t,

choose an item It ∈ 1,    , n (based on the past)
choose a feature Jt ∈ 1,    , d (based on the past)
receive Xt , s.t., Xt ∼ νIt ,Jt (conditionally on (It , Jt))

For each couple item/feature, (i , j) ∈ [n]× [d ] ↔ probability
distribution νi ,j with mean µi ,j .
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Model: bandit feedback

An algorithm collects sequentially and adaptively feedback - which
consists on noisy observations of entries of matrix M .

Learning protocol
At each time step t,

choose an item It ∈ 1,    , n (based on the past)
choose a feature Jt ∈ 1,    , d (based on the past)
receive Xt , s.t., Xt ∼ νIt ,Jt (conditionally on (It , Jt))

For each couple item/feature, (i , j) ∈ [n]× [d ] ↔ probability
distribution νi ,j with mean µi ,j .

Assumption 2: sub-Gaussian noise

If X ∼ νi ,j , then E[X ] = µi ,j , and (X − µi ,j) is 1-sub-Gaussian.
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Application: image classication within crowd-sourcing
platform [Ariu et al., 2024]

each item ↔ one image (e.g., cats and dogs)
each feature ↔ one binary question (e.g., "Does the animal
has a long fair?")
µi ,j ↔ probability of answering yes to question j on image i

Figure: Image It , Question Jt "Does the animal has a long fair?"
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PAC-setting

Learning protocol
Input: prescribed probability δ
While t ⩽ T , (T a stopping time)

choose an item It and a feature Jt (based on the past)
receive Xt , s.t., Xt ∼ νIt ,Jt (conditionally on (It , Jt))

Output: ĝ estimation of g

Maximilian Graf, Victor Thuot, Nicolas Verzelen INRAE

Clustering Experts with Bandit Feedback of their Performance in Multiple Tasks



Setting Contributions

PAC-setting

Learning protocol
Input: prescribed probability δ
While t ⩽ T , (T a stopping time)

choose an item It and a feature Jt (based on the past)
receive Xt , s.t., Xt ∼ νIt ,Jt (conditionally on (It , Jt))

Output: ĝ estimation of g with probability of error ⩽ δ

Objective (δ-PAC setting)

An algorithm A is called δ-PAC if PA,M(ĝ = g) ⩾ 1− δ.
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PAC-setting

Learning protocol
Input: prescribed probability δ
While t ⩽ T , (T a stopping time)

choose an item It and a feature Jt (based on the past)
receive Xt , s.t., Xt ∼ νIt ,Jt (conditionally on (It , Jt))

Output: ĝ estimation of g with probability of error ⩽ δ

Objective (δ-PAC setting)

An algorithm A is called δ-PAC if PA,M(ĝ = g) ⩾ 1− δ.

T is called the budget
Our objective is to construct a δ-PAC algorithm with a budget
as small as possible.
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Pure exploration

The diculty of the task is driven by two parameters:
∆ = µa − µb ∈ Rd gap vector
θ = 1

n min
n

i=1 1g(i)=0,
n

i=1 1g(i)=1


balancedness
The problems consists in balancing the exploration

over the items → to classify the items
over the features → to learn the structure of ∆

We combine ideas from (active) signal detection
[Castro, 2014, Saad et al., 2023], and good-arm-identication
[Zhao et al., 2023].
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Pure exploration

The diculty of the task is driven by two parameters:
∆ = µa − µb ∈ Rd gap vector
θ = 1

n min
n

i=1 1g(i)=0,
n

i=1 1g(i)=1


balancedness

M =




0 0 0 0 0 0
0 1 1 05 005 0
0 0 0 0 0 0
0 1 1 05 005 0
0 0 0 0 0 0




n = 5, d = 6, g = (0, 1, 0, 1, 0), θ = 25,
∆ = [0, 1, 1, 05, 005, 0]
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Main structure of the algorithm: BanditClustering

1 identify an item î such that µî ̸= µ1 (∼ signal detection)

2 using items 1 and î , use these two items to learn the structure
of ∆ = µa − µb, and choose a feature j such that ∆j  is large
(∼ good-arm identication)

3 classify each item based on samples from feature j (binary
classication)
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First step : representative identication

The rst objective is to detect an item î such that µi = ̸= µ1 (recall
that µ1 = µa).

With Sequential Halving (and sub-sampling), we prove that we
can nd î with a budget d

θ∥∆∥22
log(1δ) (up to log terms).
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Second step : feature selection

For the second step, we use î (and the rst item) to nd j such
that ∆j  is large.

Apply Sequential halving with a budget Tk on a bandit with d
arms with means ∆1,    ,∆d

Dene ∆(1) ⩾ · · · ⩾ ∆(d)
With a budget Tk ∼ d

s
1

∆2
(s)

log(1δ), the output of SH j is

such that ∆j ⩾ ∆(s)2*

Estimate ∆̂2
j ⩽ ∆2

j

If Tk ⩾ C n
∆̂2

j

log(nδ), we stop and chose j , else, we apply SH

again, with a double budget.
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Final step: classication

One we know (î , j) such that Mi ,j −M1,j  is large, together with a
lower bound ∆̂j ⩽ ∆(j) (w.h.p), then:

Sample each entry (i , j) C
∆̂2

j

log(nδ) for i = 1,    , n

classify each arm
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Main theorem

Theorem

For δ ∈ (0, 1e). Assume that ∆ ∈ [−1, 1]d . Dene

H :=
d

θ


1

∥∆∥2


+ min
s∈[d ]


d

s
+ n


1

∆2
(s)


, (1)

With a probability of at least 1− δ, BanditClustering returns ĝ = g
with a budget of at most

T ⩽ C̃ · log

1
δ


· H,

where C̃ is a logarithmic factor in d , n,∆ and poly-logarithmic in δ.
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Lower bound

Theorem 2
If A is δ-PAC,then there exists a permutation of M , Mper , s.t.,

PMper ,A


T ⩾ 2d

θ∥∆∥2 log(16δ) ∨
2(n − 2)
∥∆∥2∞

log(148δ)


⩾ δ 
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Lower bound

Theorem 2
If A is δ-PAC,then there exists a permutation of M , Mper , s.t.,

PMper ,A


T ⩾ 2d

θ∥∆∥2 log(16δ) ∨
2(n − 2)
∥∆∥2∞

log(148δ)


⩾ δ 

Assume that µa = (0,    , 0) and µb = (µ,    , µ  
s

, 0,    , 0)
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Lower bound

Theorem 2
If A is δ-PAC,then there exists a permutation of M , Mper , s.t.,

PMper ,A


T ⩾ 2d

θ∥∆∥2 log(16δ) ∨
2(n − 2)
∥∆∥2∞

log(148δ)


⩾ δ 

Assume that µa = (0,    , 0) and µb = (µ,    , µ  
s

, 0,    , 0)

1 To detect an item i with g(i) = 1 → explore 1
θ log(1δ) items.
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Lower bound

Theorem 2
If A is δ-PAC,then there exists a permutation of M , Mper , s.t.,

PMper ,A


T ⩾ 2d

θ∥∆∥2 log(16δ) ∨
2(n − 2)
∥∆∥2∞

log(148δ)


⩾ δ 

Assume that µa = (0,    , 0) and µb = (µ,    , µ  
s

, 0,    , 0)

1 To detect an item i with g(i) = 1 → explore 1
θ log(1δ) items.

2 To detect a feature j with µa
j = µ, → explore d

s log(1δ) feat..
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Lower bound

Theorem 2
If A is δ-PAC,then there exists a permutation of M , Mper , s.t.,

PMper ,A


T ⩾ 2d

θ∥∆∥2 log(16δ) ∨
2(n − 2)
∥∆∥2∞

log(148δ)


⩾ δ 

Assume that µa = (0,    , 0) and µb = (µ,    , µ  
s

, 0,    , 0)

1 To detect an item i with g(i) = 1 → explore 1
θ log(1δ) items.

2 To detect a feature j with µa
j = µ, → explore d

s log(1δ) feat..

3 To test if an entry is equal to µ VS 0, → sample it 1
µ2 log(1δ).

Maximilian Graf, Victor Thuot, Nicolas Verzelen INRAE

Clustering Experts with Bandit Feedback of their Performance in Multiple Tasks



Setting Contributions

Second lower bound

Theorem 2
If A is δ-PAC,then there exists a permutation of M , Mper , s.t.,

PMper ,A


T ⩾ 2d

θ∥∆∥2 log(16δ) ∨
2(n − 2)
∥∆∥2∞

log(148δ)


⩾ δ 
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Second lower bound

Theorem 2
If A is δ-PAC,then there exists a permutation of M , Mper , s.t.,

PMper ,A


T ⩾ 2d

θ∥∆∥2 log(16δ) ∨
2(n − 2)
∥∆∥2∞

log(148δ)


⩾ δ 

Assume that we know j such that ∆j  is maximal
For each item, we need at least 1

∆2
j
log(1δ) samples from

feature j to classify it
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Second lower bound

Theorem 2
If A is δ-PAC,then there exists a permutation of M , Mper , s.t.,

PMper ,A


T ⩾ 2d

θ∥∆∥2 log(16δ) ∨
2(n − 2)
∥∆∥2∞

log(148δ)


⩾ δ 

Assume that we know j such that ∆j  is maximal
For each item, we need at least 1

∆2
j
log(1δ) samples from

feature j to classify it
Still a gap with mins∈[d ]


d
s + n

 1
∆2

(s)

, however, optimal if ∆

takes two values.
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Take home message

1 We introduce a pure exploration problem in a matrix whose
row have to be clustered with bandit feedback.

2 We provide an algorithm with a budget H log(1δ) with

H =
d

θ


1

∥∆∥2


+ min
s∈[d ]


d

s
+ n


1

∆2
(s)



3 We provide a lower bound matching for a vector gap taking
two values.

4 Ongoing work and perspectives:
close the gap
generalize to K > 2 groups
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Take home message

1 We introduce a pure exploration problem in a matrix whose
row have to be clustered with bandit feedback.

2 We provide an algorithm with a budget H log(1δ) with

H =
d

θ


1

∥∆∥2


+ min
s∈[d ]


d

s
+ n


1

∆2
(s)



3 We provide a lower bound matching for a vector gap taking
two values.

4 Ongoing work and perspectives:
close the gap
generalize to K > 2 groups

Thank you for your attention !
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