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Introduction : from batch to active clustering

Figure: X1,    ,XT , data points in Rd partitioned in K = 3 groups
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Introduction : from batch to active clustering

Figure: ∀t ∈ [T ] , Xt ∼ N (Λ(kt)),σ
2Id ) with kt ∈ [K ]

Victor Thuot University Potsdam, LMO Orsay, INRAE Montpellier

Active clustering



ACP:Setting Contributions Lower Bound Upper bound
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Figure: N = 5 arms, partitioned in K = 3 groups
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Introduction : from batch to active clustering

What if the data points are collected sequentially ?
What if the learner can chose the order of the observations ?
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Active setting

An algorithm collects sequentially and actively data, by interacting
with a stochastic (Gaussian) bandit.
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Active setting

An algorithm collects sequentially and actively data, by interacting
with a stochastic (Gaussian) bandit.

N arms
each arm a ∈ [N] ↔ probability distribution N (µa,σ

2Id)

mean-vector µa ∈ Rd

at each time t ⩾ 1, the algorithm chooses arm At ∈ [N]
(based on passed observations)
the algorithm receives Xt , s.t.,
conditionally on At = a, Xt ∼ N (µa,σ

2Id)
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Active setting

Figure: A1 = 1 and receives X1 ∼ N (µA1 ,σ
2Id )
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Active setting

Figure: A2 = 2 and receives X2 ∼ N (µA2 ,σ
2Id )
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Active setting

Figure: A3 = 3 and receives X3 ∼ N (µA3 ,σ
2Id )
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Active setting

Figure: A4 = 4 and receives X4 ∼ N (µA4 ,σ
2Id )
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Active seting

Figure: A5 = 5 and receives X5 ∼ N (µA5 ,σ
2Id )
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Active setting

Figure: multiple sampling
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Active clustering problem

The Active Clustering Problem (ACP) ([Yang et al., 2024]):
a bandit with N arms with means µ1,    , µN
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Assumption 1: hidden partition

There exists a hidden partition G ∗ of [N] into K groups.
For a, b ∈ [N], a, b are in the same group ⇔ µa = µb.
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Active clustering problem

The Active Clustering Problem (ACP) ([Yang et al., 2024]):
a bandit with N arms with means µ1,    , µN

Assumption 1: hidden partition

There exists a hidden partition G ∗ of [N] into K groups.
For a, b ∈ [N], a, b are in the same group ⇔ µa = µb.

Objective
recover the unknown partition G ∗ using as few requests as
possible
sample arms until time T (budget)
output: Ĝ estimate of G ∗.

Victor Thuot University Potsdam, LMO Orsay, INRAE Montpellier
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Remarks

assume the groups nonempty and disjoints
K is known (and also N and d)
Λ(k) is the common mean of arms in G ∗

k (for k ∈ [K ])
the problem is dened up to permutation of the groups
σ2 known

Victor Thuot University Potsdam, LMO Orsay, INRAE Montpellier
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Active clustering problem

Figure: At time t, estimating Ĝ or sampling a new point.
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Active clustering problem

Figure: Based on X1,    ,Xt−1, choose At and observe Xt .
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PAC setting

δ-PAC algorithm

Given δ ∈ (0, 1), an algorithm π for the ACP is said to be δ-PAC
on a collection of environments E if for any ν, then

Pπ,ν(Ĝ ∼ G ∗) ⩾ 1− δ 

where ∼ means that the partition is exact up to permutation of the
groups.

We dene the optimal worst case (expected) budget on the
collection E as

T ∗(δ, E) =inf
π
sup
ν∈E

Eπ,ν [T ] ,

where π is δ-PAC on E .
Victor Thuot University Potsdam, LMO Orsay, INRAE Montpellier
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Parameters of interest

First, we consider ∆∗ = ∆∗(ν) for the minimal gap,

∆∗ = min
k ̸=k ′

∥Λ(k)− Λ(k ′)∥ > 0 

Besides, we denote m∗ as the size of the smallest group,

m∗ = min
k∈[K ]

G ∗
k  

Victor Thuot University Potsdam, LMO Orsay, INRAE Montpellier

Active clustering



ACP:Setting Contributions Lower Bound Upper bound

Parameters of interest

Figure: Here N = 5, K = 3, d = 2, m∗ = 1.
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Construction of a family of environments

Consider ∆ > 0, and m ⩾ 1, we dene

E := E(∆,m) ,

as the collection of environments ν such that ∆∗(ν) ⩾ ∆,
m∗(ν) ⩾ m.
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Construction of a family of environments

Consider ∆ > 0, and m ⩾ 1, we dene

E := E(∆,m) ,

as the collection of environments ν such that ∆∗(ν) ⩾ ∆,
m∗(ν) ⩾ m.
We study the optimal worst case budget on E(∆,m)

T ∗(δ, E(∆,m)) 
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Benchmark: the uniform sampling strategy

Uniform sampling strategy (US):
1 sample U times each arm
2 use (batch) clustering on the empirical means

Victor Thuot University Potsdam, LMO Orsay, INRAE Montpellier

Active clustering



ACP:Setting Contributions Lower Bound Upper bound

Benchmark: the uniform sampling strategy

Uniform sampling strategy (US):
1 sample U times each arm
2 use (batch) clustering on the empirical means

(shrinkage σ2 → σ2U)
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Benchmark: the uniform sampling strategy

Uniform sampling strategy (US):
1 sample U times each arm
2 use (batch) clustering on the empirical means

(shrinkage σ2 → σ2U)
Benchmark: for a condence bound δ = 1N , balanced group
m = NK , uniform sampling is δ−PAC on E(∆,m) as long as

T = NU ≳ σ2

∆2


N(log(N) ∨ K ) +


dKN(log(N) ∨ K )



([Royer, 2017, Giraud and Verzelen, 2019,
Vempala and Wang, 2004])
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Benchmark: the uniform sampling strategy

Uniform sampling strategy (US):
1 sample U times each arm
2 use (batch) clustering on the empirical means

(shrinkage σ2 → σ2U)
Benchmark: for a condence bound δ = 1N , balanced group
m = NK , uniform sampling is δ−PAC on E(∆,m) as long as

T = NU ≳ σ2

∆2


N(log(N) ∨ K ) +


dKN(log(N) ∨ K )



([Royer, 2017, Giraud and Verzelen, 2019,
Vempala and Wang, 2004])
Information-computation gap
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Benchmark: optimal result in the asymptotic regime δ → 0

The problem was introduced in [Yang et al., 2024], they provide:
1 Instance-dependent lower bound
2 An algorithm optimal in the asymptotic regime δ → 0

for instance, with m = NK , equal distance between the
groups,

lim
δ→0

T ∗(δ, E(∆,m))

log(1δ)
= 2

σ2

∆2 (N + K )

methodology: ([Garivier and Kaufmann, 2016])

Victor Thuot University Potsdam, LMO Orsay, INRAE Montpellier
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Contributions

1 Can we improve the budget of a simple uniform sampling
strategy ?
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Contributions

1 Can we improve the budget of a simple uniform sampling
strategy ?

Yes, we provide the ACB Algorithm, a polynomial-time algorithm
which outperforms the uniform sampling strategy.
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3 Is there an information-computation gap for ACP?
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Contributions

1 Can we improve the budget of a simple uniform sampling
strategy ?

Yes, we provide the ACB Algorithm, a polynomial-time algorithm
which outperforms the uniform sampling strategy.

2 Can we achieve T ∗(δ, E(∆,m)) ?

Yes, T ∗ ≃ σ2

∆2


N log


N
δ


+


dKN log


N
δ


.

3 Is there an information-computation gap for ACP?
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Contributions

1 Can we improve the budget of a simple uniform sampling
strategy ?

Yes, we provide the ACB Algorithm, a polynomial-time algorithm
which outperforms the uniform sampling strategy.

2 Can we achieve T ∗(δ, E(∆,m)) ?

Yes, T ∗ ≃ σ2

∆2


N log


N
δ


+


dKN log


N
δ


.

3 Is there an information-computation gap for ACP?
No, there is no computational gap, ACB is optimal in most

emblematic regimes (e.g., balanced setting).
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Information-theoretic lower bound

Theorem 1
There exists a universal constant c > 0, such that the following
holds for any ∆ > 0, any m ≥ 2, any δ ∈ (0, 112), and any
N ≥ mK :

T ∗(δ, E(∆,m)) ⩾ c


N +

σ2

∆2N log


N

δ


+

σ2

∆2


dKN log


N

δ




Victor Thuot University Potsdam, LMO Orsay, INRAE Montpellier

Active clustering



ACP:Setting Contributions Lower Bound Upper bound

Comments

Dichotomy between low-dimensional and high-dimensional
clustering problems:

T ∗ ⩾ c


σ2

∆2N log


N

δ


+

σ2

∆2


dKN log


N

δ



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Comments

Dichotomy between low-dimensional and high-dimensional
clustering problems:

T ∗ ⩾ c


σ2

∆2N log


N

δ


+

σ2

∆2


dKN log


N

δ




In low-dimension, reduction to the thresholding bandit problem
([Cheshire et al., 2020, Chen and Li, 2015, Chen et al., 2014]).
Simpler problem: K = 2,d = 1, µa ∈ 0,∆ with ∆ known

Victor Thuot University Potsdam, LMO Orsay, INRAE Montpellier
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Comments

T ∗ ⩾ c


N +

σ2

∆2N log


N

δ


+

σ2

∆2


dKN log


N

δ




In high-dimension, we use a series of reduction, driven by two
ideas:

1 Bayesian approach: chose a "good" prior on the unknwon
centers

2 ACP is at least as “difcult”, as the (active) supervised problem

Victor Thuot University Potsdam, LMO Orsay, INRAE Montpellier
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Upper bound: the ACB algorithm

We derive an algorithm called Active Clustering with Bandit (ACB).
Main structure of the algorithm:

1 identify Ŝ a set of K arms with exactly one arm from each
group
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Upper bound: the ACB algorithm

We derive an algorithm called Active Clustering with Bandit (ACB).
Main structure of the algorithm:

1 identify Ŝ a set of K arms with exactly one arm from each
group

2 estimate the unknown centres of the groups using Ŝ
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Upper bound: the ACB algorithm

We derive an algorithm called Active Clustering with Bandit (ACB).
Main structure of the algorithm:

1 identify Ŝ a set of K arms with exactly one arm from each
group

2 estimate the unknown centres of the groups using Ŝ

3 sample uniformly the remaining arms and use a distance-based
classier

Victor Thuot University Potsdam, LMO Orsay, INRAE Montpellier
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First step: identication of representatives

Imagine that Ŝ contains k < K arms from dierent clusters. Until
Ŝ  < K ,

take randomly a new candidate b ∈ [N]

perform a sequence of tests to decide whether b should be
added to Ŝ or not
the objective is to reject quickly arms whose groups are already
represented

We use for the tests sub-sampling and high dimensional two-sample
testing.
Similar to an elimination technique
[de Heide et al., 2021, Jamieson and Nowak, 2014].

Victor Thuot University Potsdam, LMO Orsay, INRAE Montpellier
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Upper bound: main theorem

Theorem 2
Let δ > 0. The ACB algorithm is δ-PAC on E(∆,m).
If we assume that m ⩾ log(K ), then

EACB,ν [T ] ⩽c
σ2

∆2


N log (Nδ) +


dNK log (Nδ)+

√
d
N log(K )

m



Victor Thuot University Potsdam, LMO Orsay, INRAE Montpellier
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Upper bound: main theorem

Theorem 2
Let δ > 0. The ACB algorithm is δ-PAC on E(∆,m).
If we assume that m ⩾ log(K ), then

EACB,ν [T ] ⩽c
σ2

∆2


N log (Nδ) +


dNK log (Nδ)+

√
d
N log(K )

m



c is independent of all parameters

Victor Thuot University Potsdam, LMO Orsay, INRAE Montpellier

Active clustering



ACP:Setting Contributions Lower Bound Upper bound

Upper bound: main theorem

Theorem 2
Let δ > 0. The ACB algorithm is δ-PAC on E(∆,m).
If we assume that m ⩾ log(K ), then

EACB,ν [T ] ⩽c
σ2

∆2


N log (Nδ) +


dNK log (Nδ)+

√
d
N log(K )

m



c is independent of all parameters
we also give a bound with high probability

Victor Thuot University Potsdam, LMO Orsay, INRAE Montpellier

Active clustering



ACP:Setting Contributions Lower Bound Upper bound

Comments

E[T ] ⩽ c
σ2

∆2


N log (Nδ) +


dNK log (Nδ) +

√
d
N log(K )

m


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Comments

E[T ] ⩽ c
σ2

∆2


N log (Nδ) +


dNK log (Nδ) +

√
d
N log(K )

m



1 the condition m ⩾ log(K ) is not too restrictive
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Comments

E[T ] ⩽ c
σ2

∆2


N log (Nδ) +


dNK log (Nδ) +

√
d
N log(K )

m



1 the condition m ⩾ log(K ) is not too restrictive
2 the upper bound is optimal if m is large enough,

m ⩾


N
K

log(K)√
log(Nδ)


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Comments

E[T ] ⩽ c
σ2

∆2


N log (Nδ) +


dNK log (Nδ) +

√
d
N log(K )

m



1 the condition m ⩾ log(K ) is not too restrictive
2 the upper bound is optimal if m is large enough,

m ⩾


N
K

log(K)√
log(Nδ)



3 the algorithm is polynomial → no information-computation gap

Victor Thuot University Potsdam, LMO Orsay, INRAE Montpellier
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Take home message

1 There is no computational gap for the ACP.
2 We provide a lower bound on the budget

T ∗ ⩾ c


σ2

∆2N log


N

δ


+

σ2

∆2


dKN log


N

δ




3 We provide a polynomial time δ-PAC algorithm called ACB,
together with an upper bound on its budget which matches
the lower bound for mild assumption on m∗.

Victor Thuot University Potsdam, LMO Orsay, INRAE Montpellier
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Thank you !
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Sub-Gaussian noise

A mean-zero random variable Z is subGaussian if, for any t > 0, we
have E[exp(tZ )] ≤ exp(t22) 

Assumption 2: sub-Gaussian noise

For any a ∈ [N], if X is sampled from the arm a,

E = Σ
−12
a [X − µa]

is made of independent subGaussian random variables,
Σa is a d × d symmetric matrix associated to a,
there exists σ such that maxa∈[N] ∥Σa∥op ⩽ σ2.

Exemples : bounded noise or Gaussian noise.
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First step: identication of representatives

Consider for s ∈ [r ] the s-th test performed on the candidate b.
For a ∈ Ŝ , we compute the statistic


µ̄b,s − µ̂a, µ̄

′
b,s − µ̂′

a



µ̂b,s , µ̂′
b,s are two independent estimation of µb computed

with ns samples
µ̂a, µ̂a are estimates of µa computed with nmax samples
the expectation of this statistic is ∥µa − µb∥2
we reject b if it is smaller than ∆22 fo some a ∈ Ŝ .

We use sub-Gaussian concentration to choose the tuning
parameters ns , nmax , r .
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Second step: classication

Imagine that Ŝ = a1,    , aK contains one arm from each group.
1 First, for j ∈ [K ], label aj with j and estimate µ(j) with two

independent means using 2J samples.
2 Then, for each b ∈ [N] \ Ŝ , labels b in the group

argminj=1,,K


µ̂b − µ̂(j), µ̂′

b − µ̂′(j)


µ̂b,µ̂′
b are computed with I = KJN samples
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