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What is a multi-armed bandit ?
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Main ideas

The bandit model is a sequential game, where at each round, a
learner chooses an action to make, and obtains a random reward
depending on this action.
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Main ideas

The bandit model is a sequential game, where at each round, a
learner chooses an action to make, and obtains a random reward
depending on this action.

→ Trade-o between exploitation and exploration
exploit their current knowledge;
explore unknown actions to gain knowledge for the future.
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Exploration VS exploitation

Figure: source: UC Berkeley AI course
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Clinical-trial

Two possible drugs 1 and 2
Unknown probability of being cured µ1 and µ2
At each round, choose drug 1 or 2, observe the response to the drug
(binary)
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Clinical-trial

At each round, choose drug 1 or 2, observe the response to the chosen
drug
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Clinical-trial: randomized trial

randomized trial: test half patients with 1 and half with 2
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Clinical-trial: randomized trial

randomized trial: test half patients with 1 and half with 2

What is the problem ?
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Clinical-trial: randomized trial

randomized trial: test half patients with 1 and half with 2

What is the problem ?
Solution: adapt the treatment on the y
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Some leading examples

 Clinical trial [Chow and Chang, 2008, Thompson, 1933]
When a patient arrives, the doctor chooses a treatment, and observes
how the patient reacts to the treatment.

 Ad placement [Langford and Zhang, 2007]
When a new user arrives, the website chooses one add to show, and
observes if the user clicks on the add or not.

 Dynamic pricing [Den Boer, 2015]
When a customer arrives, the store chooses a price oered to the
customer, and observes if the customer buys or not the product.
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Multi-armed-bandit model [Robbins, 1952]

Figure: 5-armed bandit
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Multi-armed-bandit model

Algorithm 1 Learning protocol
Input: K number of arms, T budget
for t = 1,    ,T do
Choose one arm At ∈ 1,    ,K based on the passed.
Obtain a reward from the environment Xt

end for
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Multi-armed-bandit model

Algorithm 2 Learning protocol
Input: K number of arms, T budget
for t = 1,    ,T do
Choose one arm At ∈ 1,    ,K based on the passed.
Obtain a reward from the environment Xt

end for

i.i.d reward: conditionally on At = a, Xt ∼ νa, where νa is a
distribution which depends only on a
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Multi-armed-bandit model

Algorithm 3 Learning protocol
Input: K number of arms, T budget
for t = 1,    ,T do
Choose one arm At ∈ 1,    ,K based on the passed.
Obtain a reward from the environment Xt

end for

i.i.d reward: conditionally on At = a, Xt ∼ νa, where νa is a
distribution which depends only on a

(ν1,    , νK ) is called the environment
(µ1,    , µK ) denotes the associated means
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Multi-armed-bandit model

Algorithm 4 Learning protocol
Input: K number of arms
for t = 1,    ,T do
Choose one arm At ∈ 1,    ,K based on the passed.
Obtain a reward from the environment Xt

end for

Na(t) :=
t

s=1 1As=a

µ̂a(t) :=
1

Na(t)

t
s=1 1As=aXt

Denote as a∗ the best choice such that µ∗ = maxa µa
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Regret minimization vs pure exploration

Regret minimization :
The reward Xt is in R, it is seen as a reward.
Cumulative Regret: RT =

T
t=1 E[µ∗ − Xt ]

Objective: minimize the cumulative regret
Pure exploration :

The budget T is seen as a cost
Simple Regret: rT = E[µ∗ − XT ]

Objective:
minimize the simple regret
minimize P(AT ̸= a∗)
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Regret minimization

Objective: maximize the number of patient cured
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Pure exploration

Objective: identify the best treatment with the least probabiity of error
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ETC: Explore ...

exploration phase: choose each drug m = 2 and identify the best drug
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ETC: ... Then Commit

exploitation phase: commit to the best drug
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ETC: Explore Then Commit

Algorithm 5 Explore-Then-Commit
Input: K number of arms, T budget, parameter m ⩽ TK
for t = 1,    ,mK do
Choose At = t mod K

end for
for t = mK + 1,    ,T do
Choose At = argmaxa µ̂a(Km)

end for
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Regret

Figure: Expected regret for ETC over 105 trials on a Gaussian bandit with means
µ1 = 0, µ2 = 110 [Lattimore and Szepesvári, 2020]
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Exploration vs exploitation

Theorem
If ν1,    , νK are 1-subGaussian,

RT ⩽ m
K

i=1

∆i + (T − Km)
K

i=1

∆i exp


−m∆2

i

4



tuning m, exploration vs exploitation
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Upper Condence Bound Algorithm (UCB)

Optimism in the face of uncertainty

Condence bound UCBa(t, δ) =


+∞ if Ta(t) = 0

µ̂a(t) +


2 log(1/δ)
Ta(t)

sinon.

Algorithm 6 Upper Condence Bound
Input: K number of arms, tuning parameter δ
for t = 1,    ,T do
Choose At = argmaxa UCBa(t − 1, δ)
Update

end for
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UCB

Figure: Upper condence bounds after 10 rounds
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UCB

Figure: Upper condence bounds after 1000 rounds
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Many variations

Non-stationary (automatic trading)
Structured set of arms (dynamic pricing)
Innite or large set of arms
Contextual : add a context Ct (dynamic pricing, recommendation
system)
Adversarial setting
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Take-Home Message

The multi-armed bandit problem captures the fundamental trade-o
between exploration and exploitation in sequential decision-making.
Bandit methods are widely applicable, from optimizing treatments in
clinical trials to dynamic pricing and recommendation systems.
Many variations for each application.
Bandit theory provides a rigorous and practical foundation for learning
and decision-making under uncertainty.
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4 Pure exploration
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Best arm identication

ν1,    , νK environment of a K -armed bandit
objective: identify the arm a∗ with the best expected reward
Fixed budget: budget T xed, minimize P(AT ̸= a∗)

Fixed condence: T is a stopping time chosen by the learner,
objective: output AT such that P(AT ̸= a∗) ⩽ δ
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Sequential Halving Algorithm: Overview

Key Idea:
Allocate budget iteratively across remaining arms.
Eliminate the less promising arms in each round based on their
empirical means.

Algorithm Steps:
1 Start with all arms 1,    ,K and divide the budget equally among

them.
2 Compute the empirical mean reward for each arm.
3 Discard approximately half of the arms with the lowest means.
4 Repeat until only one arm remains.
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Sequential Halving Algorithm

Algorithm 7 Upper Condence Bound
Input: S = 1,    ,K set of arms, budget T
n = T⌈log2(K )⌉
for s = 1,    , ⌈log2(K )⌉ do
sample nS  times each arm in S
eliminate from S the half arms with the lowest expected mean

end for
return Remaining arm â ∈ S
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Joint framework

Let M be a N × d matrix.
learning protocol – a learner observes sequentially and actively
entries of the matrix with some sub-Gaussian noise
unknown structure – there exists an unknown structure over the
matrix that has to be recovered
objective – the learner has to recover the unknown structure with a
prescribed probability of error, while minimizing the budget spent
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Active clustering problem

Problem
Observations – one entire row (dimension d) at a time
Unknown structure – there exists a partition of the rows G ∗, so
that, two rows µi and µj are in the same group, i µi = µj .
Objective – recover G ∗ with probability larger than 1− δ
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Active clustering problem through entries*

*with Maximilian Graf– PhD student in Potsdam
Problem

Observations – one entry Ij , Jt ∈ [N]× [d ] at a time
Unknown structure – there exists a partition of the rows G ∗, so
that, two rows µi and µj are in the same group, i µi = µj .
Objective – recover G ∗ with probability larger than 1− δ
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Condorcet Winner Identication*

*work with El Mehdi Saad – Centrale Paris
Observations – (It , Jt) a comparison between two experts
Unknown structure – N = d , M − 1

2 I antisymmetric, there exists a
Condorcet Winner
Objective – identify the CW
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